

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 264 (2007) 237-240

www.elsevier.com/locate/molcata

Unusual catalytic behavior of β -Bi₂Mo₂O₉ in the oxidative dehydrogenation of *n*-butene to 1,3-butadiene

Short communication

Ji Chul Jung^a, Heesoo Kim^a, Young-Min Chung^b, Tae Jin Kim^b, Seong Jun Lee^b, Seung-Hoon Oh^b, Yong Seung Kim^b, In Kyu Song^{a,*}

 ^a School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-744, South Korea
^b SK Corporation, Yuseong-ku, Daejeon 305-712, South Korea

Received 8 August 2006; received in revised form 16 September 2006; accepted 18 September 2006 Available online 23 September 2006

Abstract

A β -Bi₂Mo₂O₉ catalyst was prepared by a co-precipitation method and applied to the oxidative dehydrogenation of *n*-butene to 1,3-butadine. It was found that the β -Bi₂Mo₂O₉ catalyst retained lower oxygen mobility than γ -Bi₂MoO₆. It was also revealed that the β -Bi₂Mo₂O₉ was thermally unstable and decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ at a reaction temperature of 420 °C. However, the β -Bi₂Mo₂O₉ showed a higher catalytic performance than the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of *n*-butene, in spite of its thermal instability and low oxygen mobility. Moreover, the β -Bi₂Mo₂O₉ showed a stable catalytic performance with time on stream without catalyst deactivation. The high and stable catalytic performance of β -Bi₂Mo₂O₉ can be attributed to the synergy effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉ during the catalytic reaction, to the high intrinsic catalytic activity of β -Bi₂Mo₂O₉, and to the well-crystallized parts of β -Bi₂Mo₂O₉.

© 2006 Elsevier B.V. All rights reserved.

Keywords: β-Bi₂Mo₂O₉; n-Butene; 1,3-Butadiene; Oxidative dehydrogenation; Thermal stability; Oxygen mobility; Synergy effect

1. Introduction

Bismuth molybdates are widely employed as efficient catalysts for the oxidative dehydrogenation of *n*-butene to 1,3butadiene [1–5]. Three types of bismuth molybdate catalysts, α -Bi₂Mo₃O₁₂, β -Bi₂Mo₂O₉, and γ -Bi₂MoO₆, have been typically investigated for this reaction [6–8]. However, it has been reported that β -Bi₂Mo₂O₉ was thermally unstable and decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ in the temperature range of 400–550 °C [9–11]. Therefore, major studies on the oxidative dehydrogenation of *n*-butene over bismuth molybdate catalysts have been focused on α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts.

In spite of many studies on the use of bismuth molybdate catalysts for the oxidative dehydrogenation of n-butene, the origin of the differences in the catalytic performance of bismuth molyb-

1381-1169/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.09.030

dates is still debatable [1-5,12]. However, many researchers agree that oxygen mobility is one of the crucial factors determining the catalytic performance of bismuth molybdates in the oxidative dehydrogenation of *n*-butene [12-16], because the reaction follows the Mars–van Krevelen mechanism [12,17]. Therefore, it is likely that a bismuth molybdate catalyst with higher oxygen mobility would show a better catalytic performance in this oxidative dehydrogenation reaction [13-16,18].

Interestingly, it has been reported that β -Bi₂Mo₂O₉ exhibited the best catalytic performance in the oxidative dehydrogenation of *n*-butene among the three types of bismuth molybdate catalysts [6,12], although the β -Bi₂Mo₂O₉ catalyst is known to be thermally unstable within a certain temperature range [9–11]. Therefore, a more detailed investigation on the thermal stability and catalytic performance of β -Bi₂Mo₂O₉ in the oxidative dehydrogenation of *n*-butene would be desirable.

In this work, a β -Bi₂Mo₂O₉ catalyst was prepared by a coprecipitation method for use in the oxidative dehydrogenation of *n*-butene. Temperature-programmed reoxidation (TPRO) measurement was carried out to investigate the oxygen mobility of

^{*} Corresponding author. Tel.: +82 2 880 9227; fax: +82 2 888 7295. *E-mail address:* inksong@snu.ac.kr (I.K. Song).

 β -Bi₂Mo₂O₉. The thermal stability of β -Bi₂Mo₂O₉ was examined by means of XRD analyses before and after the TPRO measurement, and before and after the catalytic reaction. The unusual catalytic behavior of β -Bi₂Mo₂O₉ in the oxidative dehydrogenation *n*-butene was reported and discussed.

2. Experimental

A β -Bi₂Mo₂O₉ was prepared by a co-precipitation method. A known amount of bismuth nitrate (Bi(NO₃)₃·5H₂O from Sigma–Aldrich) was dissolved in distilled water that had been acidified with nitric acid. The solution was then added dropwise into an aqueous solution containing a known amount of an ammonium molybdate ((NH₄)₆Mo₇O₂₄·4H₂O from Sigma–Aldrich) under vigorous stirring. During the coprecipitation step, the pH value of the mixed solution was precisely controlled at 5.0 using known amounts of an ammonia solution. After stirring the resulting solution vigorously at room temperature for 1 h, the precipitate was filtered to obtain a solid product. The solid product was dried overnight at 110 °C, and it was then calcined at 475 °C for 5 h in a stream of air to yield the β -Bi₂Mo₂O₉ catalyst.

Temperature-programmed reoxidation (TPRO) measurement was carried out to investigate the oxygen mobility of the β -Bi₂Mo₂O₉ catalyst. Prior to the TPRO measurement, the β -Bi₂Mo₂O₉ catalyst was partially reduced by carrying out the oxidative dehydrogenation of *n*-butene at 420 °C for 3 h in the absence of an oxygen feed in order for the catalyst to consume lattice oxygen for the reaction. After placing the reduced catalyst in a conventional TPRO apparatus, a mixed stream of oxygen (10%) and helium (90%) was introduced to the catalyst sample. The furnace temperature was increased from room temperature to 500 °C at a heating rate of 5 °C/min. The amount of oxygen consumed was detected using a thermal conductivity detector (TCD).

The formation of β -Bi₂Mo₂O₉ catalyst was confirmed by XRD (MAC Science, M18XHF-SRA) and Raman spectroscopy (Horiaba Jobin Yvon, T64000) measurements. The Bi/Mo atomic ratio of β -Bi₂Mo₂O₉ was determined by ICP-AES (Shimadz, ICP-1000IV) analysis. The surface area of the catalyst was determined using an ASAP 2010 instrument (Micromeritics). The catalyst stability of β -Bi₂Mo₂O₉ was investigated by conducting XRD analyses before and after the TPRO measurement, and before and after the catalytic reaction.

The oxidative dehydrogenation of *n*-butene to 1,3-butadiene was carried out in a continuous flow fixed-bed reactor in the presence of air and steam. The feed composition was fixed at *n*-butene:O₂:steam = 1:0.75:15. Water was sufficiently vaporized by passing through a pre-heating zone and continuously fed into the reactor together with *n*-butene and air. A C₄ raffinate-3 containing 72.5 wt% *n*-butene (1-butene (14.2 wt%) + *trans*-2-butene (38.3 wt%) + *cis*-2-butene (20.0 wt%)) was used as a source of *n*-butene, and air was used as an oxygen source (nitrogen in the air served as a carrier gas). Prior to the catalytic reaction, the β -Bi₂Mo₂O₉ catalyst was pretreated at 470 °C for 1 h with a stream of air. The catalytic reaction was carried out at 420 °C. GHSV (gas hourly space velocity) was fixed at 300 h⁻¹

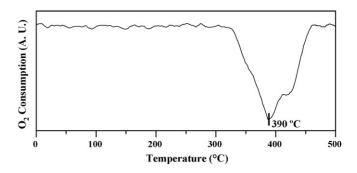


Fig. 1. TPRO profile of partially reduced β -Bi₂Mo₂O₉ catalyst.

on the basis of *n*-butene. The reaction products were periodically sampled and analyzed with a gas chromatography. The conversion of *n*-butene and the selectivity for 1,3-butadiene were calculated on the basis of carbon balance as follows. The yield for 1,3-butadiene was calculated by multiplying the conversion and selectivity:

conversion of *n*-butene = $\frac{\text{moles of } n\text{-butene reacted}}{\text{moles of } n\text{-butene supplied}}$

selectivity for 1, 3-butadiene = $\frac{\text{moles of 1, 3-butadiene formed}}{\text{moles of } n\text{-butene reacted}}$

3. Results and discussion

The formation of β -Bi₂Mo₂O₉ catalyst was verified by XRD, Raman spectroscopy, and ICP-AES measurements. The characteristic XRD pattern and Raman spectrum of the prepared β -Bi₂Mo₂O₉ were well consistent with those reported in previous works [6,9,10,13], although these are not shown here. BET surface area of β -Bi₂Mo₂O₉ was very low (2.9 m²/g). Bi/Mo atomic ratio of β -Bi₂Mo₂O₉ was determined to be 0.98, in good agreement with the theoretical value of 1.0. These results strongly support that a β -Bi₂Mo₂O₉ catalyst was successfully prepared.

Fig. 1 shows the TPRO profile of partially reduced β-Bi₂Mo₂O₉ catalyst. The experimental result showed that the TPRO peak in the β -Bi₂Mo₂O₉ catalyst appeared at 390 °C. A previous study [19] performing TPRO measurements for $\alpha\text{-}Bi_2Mo_3O_{12}$ and $\gamma\text{-}Bi_2MoO_6$ catalysts under the same conditions revealed that the TPRO peaks in the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts appeared at 390 and 285 °C, respectively. These results indicate that the oxygen mobility of bismuth molybdate catalysts decreases in the order of γ - $Bi_2MoO_6 > \alpha - Bi_2Mo_3O_{12} \approx \beta - Bi_2Mo_2O_9$. In other words, β - $Bi_2Mo_2O_9$ retains lower oxygen mobility than γ -Bi₂MoO₆ and similar oxygen mobility to α -Bi₂Mo₃O₁₂. Therefore, one may expect that β -Bi₂Mo₂O₉ would show a lower catalytic performance than γ -Bi₂MoO₆ and would exhibit a similar catalytic performance to α -Bi₂Mo₃O₁₂, if oxygen mobility is a major factor affecting the catalytic performance of bismuth molybdate catalysts.

In order to investigate the thermal stability of β -Bi₂Mo₂O₉ catalyst, XRD analyses were carried out before and after the

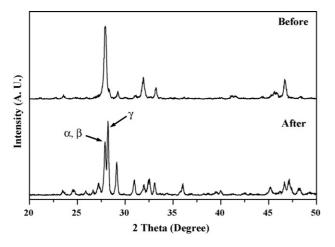


Fig. 2. XRD patterns of β -Bi₂Mo₂O₉ catalyst obtained before and after the TPRO measurement.

TPRO measurement. Fig. 2 shows the XRD patterns of β -Bi₂Mo₂O₉ catalyst obtained before and after the TPRO measurement. It was clearly observed that β -Bi₂Mo₂O₉ was decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ during the TPRO measurement. This indicates that β -Bi₂Mo₂O₉ is thermally unstable at temperatures below 500 °C. In a previous work [19], however, it was reported that both α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts showed no difference in XRD patterns before and after the TPRO measurements, indicating that the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts are thermally stable.

The thermal instability of β -Bi₂Mo₂O₉ catalyst was also verified by conducting XRD measurements before and after the catalytic reaction. Fig. 3 shows the XRD patterns of β -Bi₂Mo₂O₉ catalyst obtained before and after the catalytic reaction (80 h-reaction at 420 °C). Once again, it was observed that the β -Bi₂Mo₂O₉ was decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ during the catalytic reaction. This indicates that β -Bi₂Mo₂O₉ is thermally unstable during a catalytic reaction performed at 420 °C. Therefore, one may expect that β -Bi₂Mo₂O₉ will not show a stable catalytic performance in the oxidative dehydrogenation of *n*-butene. However, it should be noted that

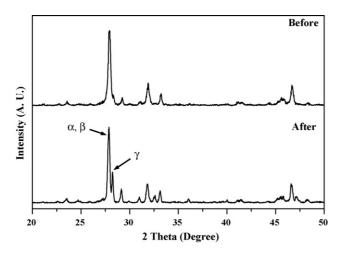


Fig. 3. XRD patterns of β -Bi₂Mo₂O₉ catalyst obtained before and after the catalytic reaction (80 h-reaction at 420 °C).

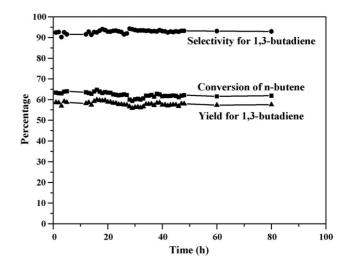


Fig. 4. Catalytic performance of β -Bi₂Mo₂O₉ in the oxidative dehydrogenation of *n*-butene at 420 °C with time on stream.

 β -Bi₂Mo₂O₉ was gradually decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ with time on stream not instantaneously [9]. According to a previous report [9], β -Bi₂Mo₂O₉ began to decompose into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ after 12 h under normal treatment conditions with an air stream at 420 °C. The above results indicate that β -Bi₂Mo₂O₉ retains its own structure for a certain initial time period of the catalytic reaction at 420 °C.

Fig. 4 shows the catalytic performance of β -Bi₂Mo₂O₉ in the oxidative dehydrogenation of *n*-butene at $420 \,^{\circ}$ C with time on stream. What is surprising is that β -Bi₂Mo₂O₉ catalyst showed a stable catalytic performance during 80h-catalytic reaction without catalyst deactivation. This catalytic behavior of β -Bi₂Mo₂O₉ is very unusual when judged from the fact that β -Bi₂Mo₂O₉ was thermally unstable and decomposed at a reaction temperature of 420 °C after a certain period of time. Another noticeable point is that the β -Bi₂Mo₂O₉ showed a higher catalytic performance than the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts, contrary to our expectation. As shown in Fig. 4, the yield for 1,3-butadine over β -Bi₂Mo₂O₉ catalyst was ca. 59%. In a previous study [19], however, the yields for 1,3-butadiene over α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts at the same reaction conditions were found to be ca. 10% and 46%, respectively. In other words, the yield for 1,3-butadiene over the bismuth molybdate catalysts was decreased in the order of β -Bi₂Mo₂O₉ > γ -Bi₂MoO₆ > α -Bi₂Mo₃O₁₂. This trend is not consistent with the trend for the oxygen mobility of bismuth molybdate catalysts (γ -Bi₂MoO₆ > α -Bi₂Mo₃O₁₂ $\approx \beta$ - $Bi_2Mo_2O_9$). This suggests that the oxygen mobility cannot be the sole determining factor for the catalytic performance of bismuth molybdate catalysts in this reaction. We thus conclude from the experimental observations that β -Bi₂Mo₂O₉ showed the best catalytic performance in the oxidative dehydrogenation of *n*-butene, even though it was thermally unstable and retained low oxygen mobility.

Such an unusual catalytic behavior of β -Bi₂Mo₂O₉ is difficult to explain. The high catalytic performance of β -Bi₂Mo₂O₉ at the initial stage is believed to be due to the high intrinsic

catalytic activity of β -Bi₂Mo₂O₉ with its own original structure. Considering that β -Bi₂Mo₂O₉ is thermally decomposed after a certain period of time, however, the unusual stable catalytic performance of β -Bi₂Mo₂O₉ may be partly explained by the synergy effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉ during the catalytic reaction. It was previously reported that a mixed phase of α - $Bi_2Mo_3O_{12}$ and γ - Bi_2MoO_6 catalysts enhanced the catalytic performance in the several catalytic reactions due to the synergy effect between two components [11,12,20-22]. In our previous work [23], it was also observed that a mixture of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ showed a better catalytic performance than the pure individual catalysts in the oxidative dehydrogenation of *n*-butene. Although β -Bi₂Mo₂O₉ was decomposed into α - $Bi_2Mo_3O_{12}$ and γ - Bi_2MoO_6 during the catalytic reaction, it is likely that α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉ during the reaction showed a synergy effect in this reaction. Another possible reason for the high and stable catalytic performance of β -Bi₂Mo₂O₉ would be due to the invariant and well-crystallized parts of β -Bi₂Mo₂O₉. It is believed that the high and stable catalytic performance of β - $Bi_2Mo_2O_9$ is due to the synergy effect of α - $Bi_2Mo_3O_{12}$ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉, to the high intrinsic catalytic activity of β -Bi₂Mo₂O₉, and to the well-crystallized parts of β -Bi₂Mo₂O₉.

4. Conclusions

A β -Bi₂Mo₂O₉ catalyst was prepared by a co-precipitation method for use in the oxidative dehydrogenation of *n*-butene. TPRO measurement revealed that the β -Bi₂Mo₂O₉ retained low oxygen mobility. It was also found that the β -Bi₂Mo₂O₉ was thermally unstable and decomposed into α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ at a reaction temperature of 420 °C. However, the β -Bi₂Mo₂O₉ showed a stable catalytic performance without catalyst deactivation. Furthermore, the β -Bi₂Mo₂O₉ showed a higher catalytic performance than the α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ catalysts in the oxidative dehydrogenation of *n*-butene, in spite of its thermal instability and low oxygen mobility. Although such an unusual catalytic behavior of β -Bi₂Mo₂O₉ is not clearly understood, it is likely that $\alpha\mbox{-}Bi_2Mo_3O_{12}$ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉ during the reaction showed a synergy effect in this reaction. It is also believed that the invariant and well-crystallized parts of β -Bi₂Mo₂O₉ were partly responsible for the unusual catalytic behavior of β -Bi₂Mo₂O₉. It can be concluded that the high and stable catalytic performance of β -Bi₂Mo₂O₉ is due to the synergy effect of α -Bi₂Mo₃O₁₂ and γ -Bi₂MoO₆ formed via the decomposition of β -Bi₂Mo₂O₉, to the high intrinsic catalytic activity of β -Bi₂Mo₂O₉, and to the well-crystallized parts of β -Bi₂Mo₂O₉.

Acknowledgement

The authors wish to acknowledge support from the Korea Energy Management Corporation (2005-01-0090-3-010).

References

- [1] Ph.A. Batist, J.F.H. Bouwens, G.C.A. Schuit, J. Catal. 25 (1972) 1.
- [2] R.K. Grasselli, Topics Catal. 21 (2002) 79.
- [3] W.J. Linn, A.W. Sleight, J. Catal. 41 (1976) 134.
- [4] M.F. Portela, M.M. Oliveira, M.J. Pires, Polyhedron 5 (1986) 119.
- [5] D.A.G. Van Oeffelen, J.H.C. Van Hooff, G.C.A. Schuit, J. Catal. 95 (1985) 84.
- [6] Ph.A. Batist, B.C. Lippens, G.C.A. Schuit, J. Catal. 5 (1966) 55.
- [7] A.C.A.M. Bleijenberg, B.C. Lippens, G.C.A. Schuit, J. Catal. 4 (1965) 581.
- [8] M. Egashira, K. Matsuo, S. Kagawa, T. Seiyama, J. Catal. 58 (1979) 409.
- [9] J.C. Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, J. Mol. Catal. A, in press.
- [10] B. Grzybowska, J. Haber, J. Komorek, J. Catal. 25 (1972) 25.
- [11] M.T. Le, W.J.M. Van Well, P. Stoltze, I. Van Driessche, S. Hoste, Appl. Catal. A 282 (2005) 189.
- [12] A.P.V. Soares, L.D. Dimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal. A 253 (2003) 191.
- [13] Ph.A. Batist, A.H.W.M. Der Kinderen, Y. Leeuwnburgh, F.A.M.G. Metz, G.C.A. Schuit, J. Catal. 12 (1968) 45.
- [14] E. Ruckenstein, R. Krishnan, K.N. Rai, J. Catal. 45 (1976) 270.
- [15] M.F. Porteal, Topics Catal. 15 (2001) 241.
- [16] Y.M. Oka, W. Ueda, Adv. Catal. 40 (1994) 233.
- [17] R.K. Grasselli, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, vol. 5, Wiley, New York, 1997, p. 2302.
- [18] G.C.A. Schuit, J. Less Comm. Metals 36 (1974) 329.
- [19] J.C. Jung, H. Kim, Y.S. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, Appl. Catal. A, in press.
- [20] Z. Bing, S. Pei, S. Shishan, G. Xiexian, J. Chem. Soc. Faraday Trans. 86 (1990) 3145.
- [21] E. Godard, E.M. Gaigneauz, P. Ruiz, B. Delmon, Catal. Today 61 (2000) 279.
- [22] H.-G. Lintz, A. Quast, Catal. Lett. 46 (1997) 255.
- [23] J.C. Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, Solid State Phenom. 119 (2007) 251.